Part III: Affect Signatures

Information Technology as Affect Infrastructure

Introduction
0:00 / 0:00

Information Technology as Affect Infrastructure

Modern information technology constitutes affect infrastructure at civilizational scale, shaping the experiential structure of billions.

Affect infrastructure is any technological system that shapes affect distributions across populations:

T:pi(a)ipopulationpi(a)ipopulation\mathcal{T}: {p_i(\mathbf{a})}_{i \in \text{population}} \mapsto {p’_i(\mathbf{a})}_{i \in \text{population}}

Social Media Affect Signature. Social media platforms systematically produce:

  • Arousal spikes: Notification-driven, intermittent reinforcement creates high-variance arousal
  • Low integration: Rapid context-switching fragments attention, reducing Φ\intinfo
  • High self-model salience: Performance of identity, social comparison
  • Counterfactual hijacking: FOMO (fear of missing out) colonizes CF\mathcal{CF} with social-comparison branches
asocial media(variable Val,high Ar,low Φ,low reff,high CF,high SM)\mathbf{a}_{\text{social media}} \approx (\text{variable }\valence, \text{high }\arousal, \text{low }\intinfo, \text{low }\effrank, \text{high }\mathcal{CF}, \text{high }\mathcal{SM})

This is structurally similar to the anxiety motif.

Algorithmic Feed Dynamics. Engagement-optimizing algorithms create affect selection pressure:

Contentselected=argmaxcE[engagementc]argmaxcΔVal(c)+ΔAr(c)\text{Content}_{\text{selected}} = \argmax_c \E[\text{engagement} | c] \approx \argmax_c |\Delta\valence(c)| + \Delta\arousal(c)

Content that maximizes engagement is content that maximizes valence magnitude (outrage or delight) and arousal. This selects for affectively extreme content, shifting population affect distributions toward the tails.

Technology-Mediated Affect Drift. The systematic shift in population affect distributions due to technology:

daˉdt=TtechnologieswTaT(a)\frac{d\bar{\mathbf{a}}}{dt} = \sum_{\mathcal{T} \in \text{technologies}} w_\mathcal{T} \cdot \nabla_\mathbf{a} \mathcal{T}(\mathbf{a})

where wTw_\mathcal{T} is the population-weighted usage of technology T\mathcal{T}.